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ABSTRACT

The Thermal Spray Laboratory at NASA's Marshall Space Flight

Center has developed and demonstrated a fabrication technique using

Vacuum Plasma Spray (VPS) to form structural components from a

tungsten/rhenium alloy. The components were assembled into an

absorber cavity for a fully-functioning, _ound test unit of a solar thermal

propulsion engine. The VPS process deposits refractory metal onto a

_aphite mandrel of the desired shape. The mandrel acts as a male mold,

forming the required contour and dimensions of the inside surface of the

deposit, Tungsten and tungsten/25% rhenium were used in the

development and production of several absorber cavity components.

These materials were selected for their high temperature (>2500 ° C

[>45300 F]) strength. Each absorber caviw comprises 3 coaxial shells

with two, double-helical flow passages throu_Ja which the propellant gas

flows. This paper describes the processing techniques, design

considerations, and process development associated with forming these

engine components.

NOMENCLATURE

GEO Geosynchronous Earth Orbit

Io specific impulse (thrust per propellant weight x sec -')
LEO Low Earth Orbit

N Newtons

VPS Vacuum Plasma Spray

kPa kilopascais

Ib, pounds force

Ib_ pounds mass

INTRODUCTION

NASA's interest in Solar Thermal Propulsion is largely for

boosting future payloads from low earth orbit (LEO) to

geosynchronous orbit (GEO) or other high orbits. In the more
distant future, low cost propulsion will be needed for

interplanetary or solar exploration and observation. The state of

the art is chemical propulsion (solid or liquid fuel). While these

systems provide high thrust, are well understood and fairly

reliable, they are limited by their complexity and low specific

impulse (I,=). They tend to be more massive and complex,

particularly liquid fuel systems.

Other, more advanced propulsion concepts overcome these
limitations, but often with other considerations that make them

tess attractive. For example, electric propulsion provides up to

ten times the I p of current chemical systems, but at very low (~
2.2 N [0.5 Ib, ]) thrust. This results in LEO to GEO that require

months rather than days. Nuclear propulsion can provide high,

thrust and I , which would shorten travel time while lowering
propellant requirement. However, safety and environmental

issues are substantial, and current political considerations

eliminate the possibility of serious development work.

Solar thermal propulsion offers a useful compromise among

these considerations. It can provide higher I,, than chemical
systems, and higher thrust to weight ratios than electrical

system. Because it is not a combustion process, solar thermal
propulsion only requires one propellant gas, and combines

moderate thrust (<445 N [< 100 lb, ]) with moderate propellant

efficiency (860 sec I p ). This results in a boost time from LEO to
GEO of about 30 days, which is acceptable for many

applications. For more distant travel, a solar thermal engine
would function much like a simple, efficient tug boat in space.
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Figure 1. Schematic of AITP Solar Thermal Engine.



In the operation of a solar thermal engine, the absorber
functions as a heat exchanger (Figure 1). Sunlight is
concentrated with a tens or mirror, and focused into the

absorber, raising the temperature to over 2500" C (4530 ° F).

The absorber cavity produced at MSFC comprises 3 VPS-

formed coaxial shells with two, double-helical flow passages

through which the propellant gas flows. As the gas flows
through the helical channels, it absorbs energy, expands and

exits the nozzle. Through this process, solar energy is converted

to kinetic energy and thrust. The test units built at MSFC are

designed to produce 2 to 2.5 N (0.5 to 0.6 Ib,) of thrust using

hydrogen as the propellant. The intended service temperature
of the ground test absorber cavity is 2125 ° C (3860 ° F), with an

internal gas pressure of 170 kPa (560 psi), using hydrogen as

the working fluid.

APPROACH

The objective of this program was to first produce a proof-of-

concept absorber, made of tungsten, to demonstrate the
vacuum plasma spray (VPS) process. Tungsten was used to

form these demonstration she/ts because the powder stock was

relatively inexpensive and available from a local producer, in
Madison, Alabama. Each lot of powder received for vacuum

plasma spray forming is evaluated for particle size and
distribution using a wet particle analyzer. A scanning electron

microscope is used to evaluate particle morphology. The

tungsten and molybdenum powders exhibited the same angular

morphology as seen in Figure 2. Typical size range of these

particles is 5 to 45 microns.

(a) (b)

Figure 2. SEM photograph of (a) tungsten powder, (b) tungsten-

25% rhenium powder.

VPS is a thermal spray process conducted in a low-

pressure, inert atmosphere within a vacuum chamber. A 100
kW (95 Btu/sec) plasma is generated by passing an

argon/hydrogen gas mixture through a DC arc. The gas is

ionized, and the resulting high-temperature plasma exits through
a nozzle into the low pressure (nominally 13 kPa [1.9 psi] )

argon environment. The material to be deposited is iniected into
the plasma plume as a fine powder, heated, and accelerated

toward the substrate to be coated. The torch motion is computer
controlled with 3 axes of motion available.

Initial plasma spray parameters were developed on flat steel

plates mounted vertically in a fixture. Part temperature was

monitored constantly by a dual wavelength pyrometer. The
microstructures of the deposited material were evaluated for

grain size, structure, and homogeneity. The density of the

deposit was measured using a computer image analyzer. Spray
parameters and torch motion were adjusted based on the

results. Parameters established using these steel plates were
then applied to the graphite mandrels.

To form the shells for the absorber cavity, tungsten was

deposited in layers on a graphite mandrel. During VPS forming,
the mandrel functions as a male mold, with the outer contour of

the mandrel forming the inside contour of the sprayed deposit.

These mandrels are rotated about their vertical axis by a turn

table while the plasma torch traverses up and down. The

plasma torch was pitched from a horizontal spray axis to nearly

vertical in order to coat the closed, hemispherical end of the
mandrel. Figure 3 shows the arrangement of the mandrel and

plasma torch within the VPS chamber.
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Figure 3. Arrangement of the mandrel and plasma torch within

the VPS chamber. Notice the position of the torch as it pitches

around the top of the mandrel.

For the demonstration unit, two shells were fabricated to

form an absorber. The first was a simple "test tube" shape, with

the open en_l serving as an aperture for the focused sun light.

This inner shell functions as a black body absorber, trapping the

energy of the directed tight. The second, outer shelt was more

comptex. It consisted of double helix threads on the side walls
of a tube, and a converging-diverging nozzle formed on one

end. The inside diameter of the thread valleys were matched by



grindingtheoutsidediameterofthesmoothwalltest tube shell.
Thus when the smaller, smooth wall shell is placed coaxially,

into the larger helical shell, a continuos flow path is formed

between the two shells, which exits from the nozzle. A seal ring

is then brazed on to the open ends of the shells to seal the gas

path while leaving the aperture open.
To form the shell, mandrels had to be fabricated from

material that would withstand the high temperatures of vacuum

plasma spray, not adhere to the tungsten, not cause any

undesirable reactions, and have a compatible coefficient of

thermal expansion. In addition, the mandrel had to be easily

machined into the desired shape. A high expansion grade of

graphite was selected as the mandrel material because it was
demonstrated to be stable at the high spray temperature and

could withstand the high thermal gradients imposed by the

plasma. The graphite would not metallurgically bond to the

sprayed tungsten, allowing the coating to be pulled off the
mandrel after spraying. High expansion graphite eased removal

of the shell by shrinking at a greater rate than the tungsten as

the system cools.

Pabrication of the outer shell was more complex because of

the helical walls. Since the tungsten coating was "locked" into
the mandrel, unequal expansion of the mandrel with respect to

the coating due to differing coefficients of thermal expansion

(CTE) would crack the tungsten deposit. A grade of graphite

was found that closely matched the CTE of the tungsten. This

allowed the deposit to shrink at the same rate as the mandrel as

they cooled. However the mandrel had to be machined out for
removal, so they could only be used one time, while the smooth
inner shell's mandrel was used several times.

Fabrication of the proof-of-concept unit demonstrated the

feasibility of this approach. The second objective of this

program was to produce an absorber to be used for ground

testing. This absorber was similar in configuration to the
demonstration unit, but it comprised three coaxial shells. This

provides two independent flow paths, one on either side of the

helical shell. For the ground test shell, a tungsten-25%rhenum

alloy was selected. This alloy is substantially more ductile than

the pure tungsten. It also provides a slight improvement in high
temperature strength. Two sets of three shells each were

fabricated and assembled into two absorbers for ground testing.

RESULTS

Tungsten powder was sprayed on graphite mandrels to a

nominal thickness of 1.65 mm (0.065 inch). Full size mandrels

measured 457 mm (18 inches) long by 64 mm (2.5 inch) in

diameter. After tungsten was sprayed on the mandrels, they
were cross sectioned, mounted, and metallurgically examined.

It was found that the tungsten aensity varied from 85% to 97%,

depending on the part of the mandrel from which the sample

was removed. The as-sprayed microstructure exhibited a strong
dependence on the substrate temperature during deposition.

Tungsten deposited on substrates at 815°C (1500°F) or below

resulted in a splat-like, lamellae structure as seen in Figure 4.

Powder particle solidification at the high substrate

temperatures combined with recrystatlization and grain growth
increased the tungsten density to 99% (Figure 5). After

evaluation of several tungsten sprayed specimens a transition

temperature range of 925 ° - 1090°C (1700 ° - 2000°F) was found

where recrystallization began on some, but not all specimens.

(a) (b)

Figure 4. VPS tungsten microstructure as deposited on
substrates below 815_C (1500_F) is typical of a dense splat

structure, magnification 200x, (a) as polished, (b) etched with

Murakami's Reagent (modified).

(a) (b)

Figure 5. VPS tungsten microstructure as deposited on

substrates above 1150 _ C (2100" F) with a dense, partially

recrystallized microstructure, magnification 200x. (a) as

polished, (b) etched with Murakami's Reagent (modified).

Tungsten and molybdenum have been formed into free

standing cartridges using the vacuum plasma spray process. As

deposited tungsten can be sprayed up to 97% dense in a splat
structure and 99°/° dense in a recrystallized structure. The

microstructure varied from a splat structure to a recrystallized

structure depending on the substrate spray temperature.

Tungsten powder deposited below 815°C (1500°F) showed no



signsof recrystallization.In-siturecrystallizationof theVPS
tungstenoccurredattemperaturesabove1150°C(2100°F)while
materialdepositedbetween815-1150°C(1500-2100°F)
exhibitedonlysporadicrecrystallization.

The higher deposition temperatures induced
recrystallizationof thetungsten,producinga moredense,
homogeneousproduct.Metallographicanalysisshewedthat

prior powder particle boundaries were consumed during
recrystallization. Past experience has demonstrated that the

recrystallization and grain growth beyond prior particle

boundaries increases elevated temperature strength and

ductility. 's

The hardness ef the as-sprayed tungsten required the use
of ceramic cutters. The lathe operation was performed without

coolant (dry) and yielded a good surface finish. Unfortunately the
brittle cutters often shattered as they dug in to occasional "soft

spots" in the material. Diamond impregnated grinding wheels

were successfully used on later samples, and provided an

excellent surface finish on the tungsten and tungsten-

25%rhenium shells. All machining and grinding was performed
on the outside diameter ef the shells.

The proof-of-concept absorber (two shells) was used to
successfully demonstrate VPS forming, mandrel extraction,

machining, and fabrication (Figure 6). Upon completion, it

served as a bench test unit for instrumentation and testing

techniques that would later be used on the ground test (three
shells) absorbers.

and some system limitations, such as the inefficient solar

collector, a relatively low solar flux of 800 W/m _ (254 Btu/hr ft 2 )
was provided to the absorber. This produced a measured thrust

of 1.6 N (0.36 Ib, ) and I ef 325 seconds during the 4 hour test.
The absorber performed as designed, with no damage or
leaking observed.

Figure 7. Three-shell absorber cavities. Individual shells are

shown on the left, partially assembled absorber on the right.

Figure 6. Nozzle and helical flow path on outer shell of proof-of-

concept absorber.

The three shell ground test absorber (Figures 7 and 8) was

installed and tested at the Air Force Research Laboratory's
(AFRL) Solar Laboratory in California. The objective of this effort

was te test the entire system. Only the results of the solar

absorber thruster are presented in this paper.

The tungsten-25% rhenium absorber was loaded into a

support structure, then enclosed in insulating material. The unit

was placed inside the AFRL test chamber in a low ambient
pressure of helium. Hydrogen propellant flowed at a rate of 1.8

kg/hr (4 Ib,/hr) through the absorber. Due to weather conditions

f .....

Figure 8. AITP Engine Assembly. Absorber cavity shown in the

middle, bottom, with support structure, insulation, and

instrumentation for ground test.

CONCLUSIONS

1. Tungsten and tungsten-25%rhenium can be formed into

free-standing structures with densities up to 97% and
assembled into solar thermal absorbers.

2. VPS,tungsten microstructure is dependent on substrate

temperature. Material deposited below 815°C (1500=F)

displayed a splat structure while material deposited above

t 150°C (2100°F)was recrystallized.

3. VPS-formed tungsten-25%rhenium absorber shells will

function properly and without material degradation during ground



testing as part of a solar thermal propulsion system.
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